
Running Concurrent Gaudi in Real Life:
Status Update on MiniBrunel

B. Hegner for the Concurrent Gaudi Team

ATLAS S&C Workshop 13-6-2013

2

•  It is obvious that we have to “go parallel” rather sooner than later
•  How do we do that in concrete?

•  Multiple jobs
–  Huge memory consumption
–  Job and output file management a problem

–  Huge number of resources needed (open files, DB connections, …)

•  Multiple processes
–  Helps on memory consumption
–  File merging a problem

–  Number of required resources not addressed

•  Concurrent framework
–  Helps greatly on memory consumption

–  Reduces number of required resources
–  Allows concurrent handling of multiple events

•  Pre-requisite for offloading to heterogenous resources

–  More challenging software wise !

3

•  Our work is already split into smaller tasks (a.k.a. algorithms)

•  Task execution is in theory constrained by two concepts

•  Data Flow
–  Algorithms depend on data products other algorithms can produce
–  E.g. electron reconstruction requires ecal clusters

•  Control Flow
–  Conditional execution of algorithms or sequences thereof
–  Trigger as prime example

Resolve these dependencies automatically.
Run everything in parallel that isn’t constrained by control flow or data
flow.

4

Provide refurbished Gaudi framework which supports

1)  Concurrent execution of algorithms

2)  Simultaneous processing of multiple events

Pragmatic approach: start from slice of real LHCb reconstruction workflow
(called MiniBrunel in the following)

–  ~20 algorithms and associated tools: raw decoding and Velo tracking

MiniBrunel
span within
the detector

See backup for useful links about the project.

5
Control flow dependencies not displayed

14 Algorithms
24 Tools (Not displayed)

6

•  Classify and document issues encountered during this effort
–  Build a “matrix of costs” - assess the size of the effort that would be

required to migrate the complete LHCb stack

•  Identify solutions and migration strategies
–  Not only thread safety: assumptions valid in the serial case are broken

–  Get experience on existing large codebase

–  Aim for minimal changes of interfaces

–  Provide new components compatible with present design

•  Timescale: end of June (a.k.a. internal “0.5 Release”)

TBB Runtime	

7

•  New components added to Gaudi to support concurrency
–  E.g. Scheduler, Whiteboard, AlgPool

•  Existing components upgraded
–  E.g. ToolSvc, EventLoopMgr

TES: Transient Event Store

We adopted forward scheduling:
Schedule an algorithm as soon
as its input data are available

8

Keeps the state of each algorithm for
each event
•  Simple finite state machine
•  Receives new events from loop

manager
•  Interrogates whiteboard for new

DataObjects
•  Pulls algorithms from AlgorithmPool

if they are available
•  Encapsulate them in a tbb::task for

execution
•  Absorbs asynchronous events (e.g.

arrival of finished tasks) with a
thread safe queue of lambda
closures (actions). Same pattern
used for new message svc.

Inital

ControlReady

DataReady

Scheduled

Executed

Control flow
conditions

Required input
data available

Task submitted
to TBB Runtime

Task completed

See Backup for more
details!

9

•  Algorithm dependencies
–  Data dependencies: announced by the algorithms themselves

•  Tools
–  A few tools served as back-door communication channels

bypassing the official (event data) channel

•  Incidents
–  Meaning of many global incidents radically changed (e.g. BeginEvent)

•  MDF* Conversion
–  Support multiple events in flight

 An incident:

* Master Data Format
LHCb raw banks persistency
technology

See Concurrency Forum meeting on April the 24th
https://indico.cern.ch/conferenceDisplay.py?
confId=248560

10

So where are we now?

11

•  Real algorithms running on real data producing real plots
–  January 2013 software stack, 2011 collision raw data

•  Tested with various scenarios
–  Different number of events in flight

–  Several algorithms in parallel

•  Assumption for this prototype:
 no change of detector conditions during run

Concurrent execution of Minibrunel works!

“The Real
Thing”

12

•  Only successfully tested software is working software
•  Our test case: LHCb standard set of data quality monitoring histograms
•  Necessary but not sufficient to guarantee production quality results
•  Check histograms for serial and concurrent version (high number of

simultaneous events and algorithms)

All standard histograms identical bin by bin

Example of data
monitoring histogram:
ADC counts.

13

•  The Testbed
•  10k events (60k for the physics performance estimation)
•  SLC6, gcc46
•  TCMalloc
•  Xeon L5640 @2.27 GHz
•  2 sockets 6+6 HT Cores each (Westmere)

14

There is an overhead when using new components designed for concurrency
when limiting to one worker thread only (as ~expected)

Timing for the event loop only (no initialisation/finalisation):
Serial Gaudi (no new components) ….. 72.9 s
Concurrent Gaudi 1 evt in flight ……... 97.7 s
Concurrent Gaudi 2 evts in flight ……. 73.9 s
Concurrent Gaudi 10 evts in flight …... 72.3 s

Frequency of task queue updates is too small to keep worker thread busy with
only one event in flight

2 events in flight: enough to get rid of ‘starvation’

1 algorithm
running at the

time

15

Maximum Speedup: ~30%

Limited by critical path in
algorithm dependencies

N algorithms simultaneously

16

Maximum Speedup: 2.5x

Limited by availability of
algorithm instances for
execution

Multiple events in flight
N algorithms simultaneously

17

Multiple events in flight	

Clone 3 most time consuming
algs (1 copy per event in flight)

* See backup for a complete study

Linear scaling of speedup
up to number of physical cores

10 events in flight already
enough for peak performance*
(thanks to HT)

18

Running mode:
•  1 clone per event in flight of 3 longest running algorithms
•  Full TBB thread pool (24 threads)
•  Limit algorithms in flight to 6

Resident Set Size at the end of the event loop (no finalisation):
Serial Gaudi (no new components) ….. 478 MB
Concurrent Gaudi 1 evt in flight ……... 480 MB
Concurrent Gaudi 2 evts in flight ……. 485 MB
Concurrent Gaudi 10 evts in flight …... 514 MB
Note: Not full LHCb events but Minibrunel events.

Memory: multithreaded solution is cheap!

6 algorithms
running

simultaneously

19

•  Behaviour of the application on a full NUMA* node is not trivial
•  E.g.: remote DRAM access, cross-socket caches synchronisation…

* NUMA = Non-Uniform Memory Access

20

•  Run with 10 events in flight and 6 threads
•  Use the “taskset” command to assign cpus to a process
•  Start with 6 cpus on one socket, move them one by one to the other
•  Measure event loop time and use perf to count cache misses

See backup for nice measuerements of uncore events!

21

•  We don’t understand completely the behaviour of the application
(performance degradation) yet.

But using the full numa node with 2 sockets is not the only possible
deployment scenario!

•  Runtime of one full-socket job alone on the machine and two simultaneous

one-socket jobs was verified to be identical.

Along the lines of the “one job per cpu” philosophy behind our data processing
since years, but with *much* less memory (even HT cores usable!)

One job per socket deployment scenario: successful

22

A concurrent framework is possible and worthwhile
•  Supporting concurrency at all levels
All developments necessary for the Minibrunel exercise finished
•  Framework: components for MT execution (Scheduler, EventLoopManager)

and integration with TBB runtime
•  Usercode: input declaration, thread-safety fixes, compatibility with >1 event

simultaneously processed
Outcome of real-world test very successful
•  Serial and concurrent Minibrunel yield identical physics output
•  Concurrent MiniBrunel scales linearly on a single die

 (on the test machines available)
•  Negligible increase of memory consumption

NUMA to be tackled as one of the next items
•  But one job per socket solution successfully tested!

23

We did a lot, but there is quite some work ahead!
•  Consolidate code and documentation for beta release at the end of June
•  Afterwards: supporting condition changes, more instrumentation, …

Support ATLAS in setting up a reconstruction slice
with concurrent Gaudi
•  Dedicated sprint next week

Collect requirements from experiments
•  In close contact with LHCb experts
•  We are participating in the FFReq work group

(Future Framework Requirements)

To summarize:
We are preparing at full steam for the future

24

25

Project Page on the Concurrency Forum Site:	

http://concurrency.web.cern.ch/GaudiHive	

	

Main Twikipage:	

https://twiki.cern.ch/twiki/bin/view/C4Hep	

	

Git Repository Web Interface: ���
http://lcgapp.cern.ch/git/GaudiMT/	

	

Jira:	

https://sft.its.cern.ch/jira/browse/CFHEP	

	

Weekly (Thursday 10:30 a.m., with phoneconf) Working Meeting Minutes:	

http://sync.in/k5XvRql9y9	

http://software.intel.com/sites/products/documentation/doclib/iss/2013/amplifier/lin/
ug_docs/reference/pmbk/events/mem_uncore_retired.html

Remote
Dram

Local Dram

http://software.intel.com/sites/products/documentation/doclib/iss/2013/amplifier/lin/ug_docs/reference/pmbk/events/mem_uncore_retired.html

27

An additional “service” thread (outside the tbb pool, which contains “worker”
threads) is spawned:
•  Host the scheduler method to update the state machine when an algorithm

has run. If no work is available, it sleeps.
The “main” thread manages the event loop (“little more than an event factory”).
While the scheduler processes the events, it sleeps.
Other service threads existed and continue to exist (e.g. conditions watchdogs)

TBB Thread Pool	

EventLoopMgr Scheduler

New
event

Finished
event

Asynchronous
exchange of
events

New algorithm
task

State machine
update closure

Asynchronous exchange of
tasks and update closures

“Main”
Thread

Service
Thread

28 14/3/13

Contains algorithms and coordinate them	

•  Gives away instances to run, retrieves

ran algorithms	

•  Clones algorithms (via AlgManager)	

–  Number depends on code re-entrancy: non

re-entrant (1 copy only), non re-entrant
(use n copies), fully re-entrant (re-use same
instance n times)	

•  “Flattens” sequencers	

•  Allow for exclusive resource checking:
e.g. if 2 algos using a non re-entrant
external library, only one at the time
can run.	

TBB Runtime

29

•  Component that submits to TBB runtime algorithms according to their data and
control flow dependencies	

•  Absorb the asynchronous finishing of submitted tasks	

•  Update internal algorithms’ state machine accordingly	

Algorithm
Algorithm

Algorithm

Algorithm
Algorithm

Algorithm

Executed algorithms

Forward Scheduler Class

…
Push closure triggering states update:
asynchronous call!

Closures
Consumer

Method (in its
own thread)

Algorithms’
Injection
Method

Synchronous
injection of
algorithms

State Machine

Queue of closures

30

•  Emulate an LHCb full
reconstruction workflow with
CPUCrunching algorithms (no
real work done, just keep cpus
busy)

•  Explore expected behaviour

•  Demonstrate potential of the
multithreaded approach

Evolving LHC Data Processing Frameworks for
Efficient Exploitation of New CPU Architectures 	

B. Hegner at al, IEEE-NSS 2012	

~8 Months ago

31

 One event processed at the
time: ~30% speedup
 No cloning: saturate at a
speedup of 2x
 Cloning: ideal (linear) scaling
reached with ~10 events in flight

Cloning of the 3 most time
consuming algs only

12 simultaneous
algorithms: run the
application
occupying the full
socket

