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HEP Software Frameworks
✤ HEP Experiments develop Software Frameworks

✤ General Architecture of the Event processing applications
✤ To achieve coherency  and to facilitate software re-use
✤ Hide technical details to the end-user Physicists (providers of the Algorithms)

✤ Applications are developed by customizing the Framework
✤ By composition of elemental Algorithms to form complete applications
✤ Using third-party 

components wherever 
possible and configuring
them
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Algorithms and Data Flows
✤ The meat of the applications is 

coded by physicists in terms of 
Algorithms
✤ They transform raw input event data  

into processed data
✤ e.g. from digits -> hits -> tracks -> 

jets -> etc
✤ Algorithms solely interact with the 

Event Data Store (“whiteboard”) to 
get input data and put the results
✤ Agnostic to the actual “producer” and 

“consumer” of the data
✤ Complete data-flows are programmed 

by the integrator of the application 
(e.g. Reconstruction, Trigger, etc.)  
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CPU Technology Trends
✤ For the last ~20 years we have had an easy

life in HEP software and computing
✤ Year after year up to 2x increase in computing

capacity tanks to the #transistor/chip (Moore’s
law) and higher clock frequencies

✤ The same program that in year 1995 was needing
10 seconds, would need 1 second in 2002 

✤ The “easy life”  is now over
✤ The available transistors are used for 

adding new CPU cores while keeping the 
clock frequency basically constant thus limiting the power consumption  

✤ We need to introduce concurrency into applications to fully exploit 
the continuing exponential CPU throughput gains
✤ Efficiency and performance optimization will become more important
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Time for a New Framework
✤ For the last 40 years HEP event processing frameworks have had the 

same structure
✤ initialize; loop over events {loop over modules {…} }; finalize
✤ O-O has not added anything substantial
✤ It is simple, intuitive, easy to manage, scalable

✤ Current frameworks designed late 1990’s
✤ We know now better what is really needed
✤ Unnecessary complexity impacts on performance 

✤ Clear consensus that we need to adapt HEP applications to new 
generation CPUs
✤ Multi-process, multi-threads, GPUs, vectorization, etc.
✤ The one job-per-core approach will fail soon due to demanding too much 

memory and sequential file merging
6
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Why Concurrency?
✤ We need to adapt current data processing applications to the new 

many-core architectures (~100 cores)
✤ No major change is expected in the overall throughput with respect to trivial 

one-job-per-core parallelism with today core counts
✤ We must reduce the required resources per core to avoid real barriers 

when scaling to ~100 cores
✤ I/O bandwidth
✤ Memory requirements
✤ Connections to DB, open files, etc.

✤ Reduce latency for single jobs (e.g. trigger, user analysis)
✤ Run a given job in less time making use of all available cores
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Concurrency at What Level?
✤ Concrete HEP algorithms can be parallelized with some effort

✤ Making use of bare threads, OpenMP, MPI, OpenCL, Cuda, etc.
✤ But difficult to integrate them in a complete application
✤ Much more beneficial performance-wise to concentrate on the parallelization 

of the full application,  not only on some parts  (Amdahl’s law)
✤ Developing and validating parallel code is very difficult

✤ Very technical, difficult to validate and debug
✤ ‘Physicists’ should be saved from this
✤ Concurrency will impose some limitations on the way to code the algorithms  

✤ At the Framework level you have the full overview and control of the 
application
✤ Controlling the access to critical shared state
✤ The framework may decide to run some parts of the code sequentially
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Concurrent ‘Algorithm’ processing
✤ Ability to schedule modules/algorithms concurrently

✤ Full data dependency analysis would be required (no global data or hidden 
dependencies)

✤ Need to resolve the 
DAGs (Directed Acyclic Graphs) 
statically and/or dynamically

✤ Unfortunately with today’s existing Algorithms we cannot use 
efficiently ~100 cores
✤ Estimated concurrency factor rather low for CMS and LHCb

(between 3 and 6)
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Example: LHCb Reconstruction

✤ DAG of Brunel (214 Algorithms)
✤ Obtained by instrumenting the existing 

sequential code
✤ Probably still missing ‘hidden or 

indirect’ dependencies

✤ This can give us an estimate of the 
potential for ‘concurrency’
✤ Assuming no changes in current 

reconstruction algorithms
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Many ‘Concurrent’ Events
✤ Need to deal with the tails of sequential processing

✤ There is always an Algorithm that takes very long (e.g. 20% in reconstruction) 
that produces data (e.g. fitted tracks) that are needed by many other

✤ Introducing pipeline processing
✤ Exclusive access to resources

or non-reentrant algorithms
can be pipelined
e.g. file writing, DB access, etc.

✤ Current frameworks handle a 
single event at the time. They 
need to be evolved
✤ Design a powerful and 

flexible algorithm scheduler
✤ Need to define the concept of

an event context
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How? Initiatives taken so far
✤ A new forum was established at the start of this year, the Concurrency 

Forum, with the aim of :
✤ sharing knowledge amongst the whole community
✤ forming a consensus on the best concurrent programming models and on 

technology choices
✤ developing and adopting common solutions 

✤ The forum meets bi-weekly and there has been an active and growing 
participation involving many different laboratories and experiment 
collaborations

✤ A programme of work was started to build a number of demonstrators  for 
exercising different capabilities, with clear deliverables and goals
✤ 16 projects are in progress started by different groups in all corners of the 

community
✤ In the longer term this may need to evolve into other means for measuring 

progress and steering the future work programme
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TBB Technology
✤ Intel® Threading Building Blocks (TBB) has been identified as a good 

match for implementing concurrency at the Framework level
✤ C++ library with a rich and complete approach to express parallelism

✤ Concurrent containers:  concurrent_vector, concurrent_hash_map, ...
✤ Algorithms: parallel_for, pipeline, task, ...
✤ Other: atomic data types, memory allocators, ...

✤ Provides a “task-based” programming  model that abstracts platform 
details and threading mechanisms for scalability and performance

✤ Positive evaluations reported at the Concurrency Forum
✤ Easy to build and very portable 
✤ Lower CPU overhead than other libraries evaluated
✤ Missing functionalities are generally easy to add
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Prototype: GaudiHive
✤ So far a ‘toy’ Framework implemented using TBB

✤ No real algorithms but CPU crunchers
✤ Timing and data dependencies from real workflows

✤ Schedule an Algorithm when its inputs are available
✤ Need to declare Algorithms’ inputs
✤ The tbb::task is the pair (Algorithm*, EventContext*)

✤ Multiple events managed simultaneously
✤ Bigger probability to schedule an Algorithm
✤ Whiteboard integrated in the Data Store
✤ Which has been made thread safe

✤ Several copies of the same algorithm can coexist
✤ Running on different events
✤ Responsibility of AlgoPool to manage the copies

✤ Some services have been made thread-safe
✤ E.g. TBBMessageService

14

Whiteboard 
(TES)

Algorithm

Event NEvent NEvent NExecutioExecution
Context

Algorithm
Algorithm

Scheduler

Algorithm Pooltbb::task'

EventLoopMgr

Thursday, November 1, 12



Test On Brunel Workflow
✤ 214 Algorithms, real data 

dependencies, (average) real 
timing
✤ Maximum speedup depends 

strongly on the workflow 
chosen

✤ Adding more simultaneous 
events moves the maximum 
concurrency from 3 to 4  with 
single Algorithm instances 

✤ Increased parallelism when 
cloning algorithms
✤ Even with a moderate number 

of events in flight
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# Clones vs. Runtime
✤ Tested strategy

✤ Algorithm cloned if it can be scheduled
and all its existent instances 
busy on other events

✤ Long running algorithms end 
up having multiple clones
✤ Easy solution but we need to worry

about statistical outputs (counters, 
histograms, etc.)

✤ Alternatively, these are candidate algorithms to be parallelized 
✤ A high number of short algorithms have 2 copies

✤ We may forbid multiple copies for those without probably reducing 
achievable parallelism
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Event Backlog
✤ Event backlog: difference between latest event put in flight and oldest event 

being processed
✤ Cloning helps maintaining a little event backlog
✤ Cloning increases throughout, but as well results in guaranteed latencies
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Concurrent Gaudi: Status
✤ A prototype of a concurrent Gaudi (GaudiHive) has been developed 

as an evolution (new branch in the Gaudi git repository)
✤ Able to schedule and run algorithms concurrently
✤ Able to run multiple events simultaneously
✤ Friendly with sub-event parallelism if using TBB (not tested yet)

✤ So far has been tested with “fake” BRUNEL reconstruction workflow:
✤ Important speedup already been obtained, but no "perfect" scaling achieved 

yet
✤ Algorithm cloning increase parallelism, keeps “latency” under control

✤ Test bench to exercise timings and dependencies for other 
applications:
✤ CMSSW reconstruction workflow (already there)
✤ ATLAS (got preliminary input)
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Concurrent Gaudi: Plans
✤ Continue the investigation about thread unsafe Gaudi elements

✤ For example Services, public Tools, Incidents, etc.
✤ Provide options for their upgrade

✤ Multiple copies+merge? 
✤ Locked-gateway?

✤ Finding reusable patterns for thread-safe access to shared resources
✤ Strategy: start running real algorithms

✤ Start with subset of LHCb reconstruction (~30 algorithms) including I/O
✤ Extend to full workflow later
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Conclusions
✤ Applications will increasingly need to be concurrent if we want to fully 

exploit the continuing exponential CPU throughput gains
✤ Parallelizing the framework spares physicists from developing parallel code 

and is the natural place to have the full overview and control of the application 
✤ The Concurrency Forum: important results achieved

✤ Evaluation of possible common technologies (e.g. TBB)
✤ Prototype of Gaudi Framework with concurrency has been developed

✤ Ideal test-bench for validating scheduling strategies
✤ Initial results has been presented

✤ A clear trend emerged for the future of HEP data processing
✤ Parallelism within the algorithms
✤ Parallelism among algorithms
✤ Parallelism among events
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