
1/11/2012

Evolving LHC Data Processing Frameworks
for Efficient Exploitation of New CPU
Architectures

IEEE Nuclear Science Symposium (NSS) 2012, Anaheim, USA
B. Hegner, P. Mato, D. Piparo

Thursday, November 1, 12

Contents
✤ Data Processing Frameworks in HEP
✤ Why we need to evolve them?
✤ What concurrency do we need to add?
✤ How to achieve it?

✤ Concurrency Forum
✤ The GaudiHive Prototype

✤ Status and Plans
✤ Conclusions

2

Thursday, November 1, 12

HEP Software Frameworks
✤ HEP Experiments develop Software Frameworks

✤ General Architecture of the Event processing applications
✤ To achieve coherency and to facilitate software re-use
✤ Hide technical details to the end-user Physicists (providers of the Algorithms)

✤ Applications are developed by customizing the Framework
✤ By composition of elemental Algorithms to form complete applications
✤ Using third-party

components wherever
possible and configuring
them

3

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

Algorithm Algorithm

Detec. Data
Service

Persistency
Service

Data
Files

Transient
Detector

Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services Histogram

Service
Persistency

Service
Data
Files

Transient
Histogram

Store

Application
Manager Converter Converter Event

Selector

Transient
Event
Store

•Example the Gaudi Framework
used by ATLAS and LHCb
among others

Thursday, November 1, 12

Algorithms and Data Flows
✤ The meat of the applications is

coded by physicists in terms of
Algorithms
✤ They transform raw input event data

into processed data
✤ e.g. from digits -> hits -> tracks ->

jets -> etc
✤ Algorithms solely interact with the

Event Data Store (“whiteboard”) to
get input data and put the results
✤ Agnostic to the actual “producer” and

“consumer” of the data
✤ Complete data-flows are programmed

by the integrator of the application
(e.g. Reconstruction, Trigger, etc.)

4

Algorithm
A

Algorithm
B

Algorithm
C

Transient Event
Data Store

Data T1

Data T2, T3

Data T2

Data T3, T4

Data T4

Data T5

Data T1 Data T1

Data T5

Real dataflow

Apparent dataflow

Thursday, November 1, 12

CPU Technology Trends
✤ For the last ~20 years we have had an easy

life in HEP software and computing
✤ Year after year up to 2x increase in computing

capacity tanks to the #transistor/chip (Moore’s
law) and higher clock frequencies

✤ The same program that in year 1995 was needing
10 seconds, would need 1 second in 2002

✤ The “easy life” is now over
✤ The available transistors are used for

adding new CPU cores while keeping the
clock frequency basically constant thus limiting the power consumption

✤ We need to introduce concurrency into applications to fully exploit
the continuing exponential CPU throughput gains
✤ Efficiency and performance optimization will become more important

5

© 2009 Herb Sutter

Thursday, November 1, 12

http://www.gotw.ca/copyright.htm
http://www.gotw.ca/copyright.htm

Time for a New Framework
✤ For the last 40 years HEP event processing frameworks have had the

same structure
✤ initialize; loop over events {loop over modules {…} }; finalize
✤ O-O has not added anything substantial
✤ It is simple, intuitive, easy to manage, scalable

✤ Current frameworks designed late 1990’s
✤ We know now better what is really needed
✤ Unnecessary complexity impacts on performance

✤ Clear consensus that we need to adapt HEP applications to new
generation CPUs
✤ Multi-process, multi-threads, GPUs, vectorization, etc.
✤ The one job-per-core approach will fail soon due to demanding too much

memory and sequential file merging
6

Thursday, November 1, 12

Why Concurrency?
✤ We need to adapt current data processing applications to the new

many-core architectures (~100 cores)
✤ No major change is expected in the overall throughput with respect to trivial

one-job-per-core parallelism with today core counts
✤ We must reduce the required resources per core to avoid real barriers

when scaling to ~100 cores
✤ I/O bandwidth
✤ Memory requirements
✤ Connections to DB, open files, etc.

✤ Reduce latency for single jobs (e.g. trigger, user analysis)
✤ Run a given job in less time making use of all available cores

7

Thursday, November 1, 12

Concurrency at What Level?
✤ Concrete HEP algorithms can be parallelized with some effort

✤ Making use of bare threads, OpenMP, MPI, OpenCL, Cuda, etc.
✤ But difficult to integrate them in a complete application
✤ Much more beneficial performance-wise to concentrate on the parallelization

of the full application, not only on some parts (Amdahl’s law)
✤ Developing and validating parallel code is very difficult

✤ Very technical, difficult to validate and debug
✤ ‘Physicists’ should be saved from this
✤ Concurrency will impose some limitations on the way to code the algorithms

✤ At the Framework level you have the full overview and control of the
application
✤ Controlling the access to critical shared state
✤ The framework may decide to run some parts of the code sequentially

8

Thursday, November 1, 12

Concurrent ‘Algorithm’ processing
✤ Ability to schedule modules/algorithms concurrently

✤ Full data dependency analysis would be required (no global data or hidden
dependencies)

✤ Need to resolve the
DAGs (Directed Acyclic Graphs)
statically and/or dynamically

✤ Unfortunately with today’s existing Algorithms we cannot use
efficiently ~100 cores
✤ Estimated concurrency factor rather low for CMS and LHCb

(between 3 and 6)

9

Time

Input Processing Output

Thursday, November 1, 12

Example: LHCb Reconstruction

✤ DAG of Brunel (214 Algorithms)
✤ Obtained by instrumenting the existing

sequential code
✤ Probably still missing ‘hidden or

indirect’ dependencies

✤ This can give us an estimate of the
potential for ‘concurrency’
✤ Assuming no changes in current

reconstruction algorithms

10

Thursday, November 1, 12

Many ‘Concurrent’ Events
✤ Need to deal with the tails of sequential processing

✤ There is always an Algorithm that takes very long (e.g. 20% in reconstruction)
that produces data (e.g. fitted tracks) that are needed by many other

✤ Introducing pipeline processing
✤ Exclusive access to resources

or non-reentrant algorithms
can be pipelined
e.g. file writing, DB access, etc.

✤ Current frameworks handle a
single event at the time. They
need to be evolved
✤ Design a powerful and

flexible algorithm scheduler
✤ Need to define the concept of

an event context

11

Time

Thursday, November 1, 12

How? Initiatives taken so far
✤ A new forum was established at the start of this year, the Concurrency

Forum, with the aim of :
✤ sharing knowledge amongst the whole community
✤ forming a consensus on the best concurrent programming models and on

technology choices
✤ developing and adopting common solutions

✤ The forum meets bi-weekly and there has been an active and growing
participation involving many different laboratories and experiment
collaborations

✤ A programme of work was started to build a number of demonstrators for
exercising different capabilities, with clear deliverables and goals
✤ 16 projects are in progress started by different groups in all corners of the

community
✤ In the longer term this may need to evolve into other means for measuring

progress and steering the future work programme

12http://concurrency.web.cern.ch
Thursday, November 1, 12

http://concurrency.web.cern.ch
http://concurrency.web.cern.ch

TBB Technology
✤ Intel® Threading Building Blocks (TBB) has been identified as a good

match for implementing concurrency at the Framework level
✤ C++ library with a rich and complete approach to express parallelism

✤ Concurrent containers: concurrent_vector, concurrent_hash_map, ...
✤ Algorithms: parallel_for, pipeline, task, ...
✤ Other: atomic data types, memory allocators, ...

✤ Provides a “task-based” programming model that abstracts platform
details and threading mechanisms for scalability and performance

✤ Positive evaluations reported at the Concurrency Forum
✤ Easy to build and very portable
✤ Lower CPU overhead than other libraries evaluated
✤ Missing functionalities are generally easy to add

13

Thursday, November 1, 12

Prototype: GaudiHive
✤ So far a ‘toy’ Framework implemented using TBB

✤ No real algorithms but CPU crunchers
✤ Timing and data dependencies from real workflows

✤ Schedule an Algorithm when its inputs are available
✤ Need to declare Algorithms’ inputs
✤ The tbb::task is the pair (Algorithm*, EventContext*)

✤ Multiple events managed simultaneously
✤ Bigger probability to schedule an Algorithm
✤ Whiteboard integrated in the Data Store
✤ Which has been made thread safe

✤ Several copies of the same algorithm can coexist
✤ Running on different events
✤ Responsibility of AlgoPool to manage the copies

✤ Some services have been made thread-safe
✤ E.g. TBBMessageService

14

Whiteboard
(TES)

Algorithm

Event NEvent NEvent NExecutioExecution
Context

Algorithm
Algorithm

Scheduler

Algorithm Pooltbb::task'

EventLoopMgr

Thursday, November 1, 12

Test On Brunel Workflow
✤ 214 Algorithms, real data

dependencies, (average) real
timing
✤ Maximum speedup depends

strongly on the workflow
chosen

✤ Adding more simultaneous
events moves the maximum
concurrency from 3 to 4 with
single Algorithm instances

✤ Increased parallelism when
cloning algorithms
✤ Even with a moderate number

of events in flight

15

Test system with 12 physical cores x 2
hardware threads (HT)

Thursday, November 1, 12

Clones vs. Runtime
✤ Tested strategy

✤ Algorithm cloned if it can be scheduled
and all its existent instances
busy on other events

✤ Long running algorithms end
up having multiple clones
✤ Easy solution but we need to worry

about statistical outputs (counters,
histograms, etc.)

✤ Alternatively, these are candidate algorithms to be parallelized
✤ A high number of short algorithms have 2 copies

✤ We may forbid multiple copies for those without probably reducing
achievable parallelism

16

~110$algorithms$

Thursday, November 1, 12

Event Backlog
✤ Event backlog: difference between latest event put in flight and oldest event

being processed
✤ Cloning helps maintaining a little event backlog
✤ Cloning increases throughout, but as well results in guaranteed latencies

17

Number'of'events'
in'flight'

Thursday, November 1, 12

Concurrent Gaudi: Status
✤ A prototype of a concurrent Gaudi (GaudiHive) has been developed

as an evolution (new branch in the Gaudi git repository)
✤ Able to schedule and run algorithms concurrently
✤ Able to run multiple events simultaneously
✤ Friendly with sub-event parallelism if using TBB (not tested yet)

✤ So far has been tested with “fake” BRUNEL reconstruction workflow:
✤ Important speedup already been obtained, but no "perfect" scaling achieved

yet
✤ Algorithm cloning increase parallelism, keeps “latency” under control

✤ Test bench to exercise timings and dependencies for other
applications:
✤ CMSSW reconstruction workflow (already there)
✤ ATLAS (got preliminary input)

18

Thursday, November 1, 12

Concurrent Gaudi: Plans
✤ Continue the investigation about thread unsafe Gaudi elements

✤ For example Services, public Tools, Incidents, etc.
✤ Provide options for their upgrade

✤ Multiple copies+merge?
✤ Locked-gateway?

✤ Finding reusable patterns for thread-safe access to shared resources
✤ Strategy: start running real algorithms

✤ Start with subset of LHCb reconstruction (~30 algorithms) including I/O
✤ Extend to full workflow later

19

Thursday, November 1, 12

Conclusions
✤ Applications will increasingly need to be concurrent if we want to fully

exploit the continuing exponential CPU throughput gains
✤ Parallelizing the framework spares physicists from developing parallel code

and is the natural place to have the full overview and control of the application
✤ The Concurrency Forum: important results achieved

✤ Evaluation of possible common technologies (e.g. TBB)
✤ Prototype of Gaudi Framework with concurrency has been developed

✤ Ideal test-bench for validating scheduling strategies
✤ Initial results has been presented

✤ A clear trend emerged for the future of HEP data processing
✤ Parallelism within the algorithms
✤ Parallelism among algorithms
✤ Parallelism among events

20

Thursday, November 1, 12

