Evolving LHC Data Processing Frameworks
for KEfficient Exploitation of New C.PU

Architectures

IEEE Nuclear Science Symposium (NSS) 2012, Anaheim, USA
B. Hegner, P. Mato, D. Piparo

1/11/2012

Thursday, November 1, 12

Contents

* Data Processing Frameworks in HEP

* Why we need to evolve them?

* What concurrency do we need to add?

+ How to achieve it?

* Concurrency Forum

* The GaudiHive Prototype

+ Status and Plans

+ Conclusions

Thursday, November 1, 12

HEP Software Frameworks

* HEP Experiments develop Software Frameworks

+ General Architecture of the Event processing applications

+ To achieve coherency and to facilitate software re-use

+ Hide technical details to the end-user Physicists (providers of the Algorithms)

* Applications are developed by customizing the Framework

* By composition of elemental Algorithms to form complete applications

+ Using third-party
components wherever
possible and configuring
them

* Example the Gaudi Framework

used by ATLAS and LHCb
among others

i

Message |&~ “Y"Event Data
Service /’ Service

JobOptions
Service

Particle Prop
Service

Other [
Services i

A

Application
‘ ;A%nager ' s Event
—— Selector

Algorithm

Detec. Data
Service

(= {2) Event
#-3) Gen
=) MC

= Trartices

=) Rich

~IZ) Digits

Transigﬁ*?

Event oo

its

Transient
Detector
Store

Histogram
Service

Transient
Histogram
Store

Converter

Persistency
Service

Service

Thursday, November 1, 12

Algorithms and Data Flows

* The meat of the applications is
coded by physicists in terms of
Algorithms

Data T1

* They transform raw input event data

Data T1 :
into processed data

Algorithm
A

(Algorithm
B

Apparent dataflow
redataflon © Agnostic to the actual “producer” and

R ——
“consumer’”’ of the data

Data T2, T3

* e.g. from digits -> hits -> tracks ->
jets -> etc

Transient Event| Data T2

Data Store

+ Algorithms solely interact with the
Event Data Store (“whiteboard”) to
get input data and put the results

Data T4

* Complete data-flows are programmed
by the integrator of the application
(e.g. Reconstruction, Trigger, etc.)

Thursday, November 1, 12

C.PU Technology lrends

10,000,000 -

* Fpr .the last ~20 years we have ha.d an easy N T /
life in HEP software and computing Intel CPU Trends .

(sources: Intel, Wikipedia, K. Olukotun)
* Year after year up to 2x increase in computing

capacity tanks to the #transistor/chip (Moore’s
law) and higher clock frequencies

* The same program that in year 1995 was needing ..
10 seconds, would need 1 second in 2002 A .

B Tidiien @00)

* The “easy life” is now over e T

® Potf ok (UM

1970 1975 1980 1985 1990 1995 2000 2005 2010

+ The available transistors are used for © 2009 Herb Sutter
adding new CPU cores while keeping the

clock frequency basically constant thus limiting the power consumption

* We need to introduce concurrency into applications to fully exploit
the continuing exponential CPU throughput gains

* Etficiency and performance optimization will become more important

Thursday, November 1, 12

http://www.gotw.ca/copyright.htm
http://www.gotw.ca/copyright.htm

Time for a New Framework

* For the last 40 years HEP event processing frameworks have had the
same structure

* initialize; loop over events {loop over modules {...} }; finalize
+ (-0 has not added anything substantial

* It is simple, intuitive, easy to manage, scalable

Current frameworks designed late 1990’s

+ We know now better what is really needed

* Unnecessary complexity impacts on performance

* Clear consensus that we need to adapt HEP applications to new
generation CPUs

+ Multi-process, multi-threads, GPUs, vectorization, etc.

+ The one job-per-core approach will fail soon due to demanding too much
memory and sequential file merging

Thursday, November 1, 12

Why Concurrency?

* We need to adapt current data processing applications to the new
many-core architectures (~100 cores)

+ No major change is expected in the overall throughput with respect to trivial
one-job-per-core parallelism with today core counts

* We must reduce the required resources per core to avoid real barriers
when scaling to ~100 cores

+ /O bandwidth

* Memory requirements

* Connections to DB, open files, etc.

* Reduce latency for single jobs (e.g. trigger, user analysis)

* Run a given job in less time making use of all available cores

Thursday, November 1, 12

Concurrency at What Level?

* Concrete HEP algorithms can be parallelized with some effort

+ Making use of bare threads, OpenMP, MPI, OpenCL, Cuda, etc.
+ But difficult to integrate them in a complete application
+ Much more beneficial performance-wise to concentrate on the parallelization

of the full application, not only on some parts (Amdahl’s law)

* Developing and validating parallel code is very ditficult

+ Very technical, difficult to validate and debug
+ ‘Physicists’ should be saved from this

+ Concurrency will impose some limitations on the way to code the algorithms

* At the Framework level you have the full overview and control of the
application

+ Controlling the access to critical shared state

+ The framework may decide to run some parts of the code sequentially

Thursday, November 1, 12

Concurrent ‘Algorithm’ processing

* Ability to schedule modules/algorithms concurrently

+ Full data dependency analysis would be required (no global data or hidden

dependencies
2) Input Processing Output

+ Need to resolve the
DAGs (Directed Acyclic Graphs) D.ﬂ' “O
Time

statically and / or dynamically

* Unfortunately with today’s existing Algorithms we cannot use
etficiently ~100 cores

+ Estimated concurrency factor rather low for CMS and LHCb
(between 3 and 6)

Thursday, November 1, 12

Example: LHCb Reconstruction

* DAG of Brunel (214 Algorithms)

+ Obtained by instrumenting the existing
sequential code w— e

+ Probably still missing “hidden or
indirect’” dependencies

Rec_Calo_Photons X

ElectronMatchMon253

PhotonFromMergedID 183

Rec_Calo_PhotonFromMergedID

* This can give us an estimate of the
potential for ‘concurrency’

+ Assuming no changes in current
reconstruction algorithms

NeutralProtoPMaker220 Rec_Su

Rec_ProtoP_Neutrals

PackPhotons352

PackNeutralProtos358

pRec_Calo_Photons pRec_Calo

10

Thursday, November 1, 12

Many ‘Concurrent’ Events

* Need to deal with the tails of sequential processing

+ There is always an Algorithm that takes very long (e.g. 20% in reconstruction)
that produces data (e.g. fitted tracks) that are needed by many other

* Introducing pipeline processing

* Exclusive access to resources
or non-reentrant algorithms
can be pipelined
e.g. file writing, DB access, etc.

+ Current frameworks handle a
single event at the time. They
need to be evolved

* Design a powerful and
flexible algorithm scheduler

+ Need to define the concept of
an event context

11

Thursday, November 1, 12

How? Imitiatives taken so far

+ A new forum was established at the start of this year, the Concurrency
Forum, with the aim of :

+ sharing knowledge amongst the whole community

+ forming a consensus on the best concurrent programming models and on
technology choices

* developing and adopting common solutions

+ The forum meets bi-weekly and there has been an active and growing
participation involving many different laboratories and experiment
collaborations

* A programme of work was started to build a number of demonstrators for
exercising different capabilities, with clear deliverables and goals

+ 16 projects are in progress started by different groups in all corners of the
community

+ In the longer term this may need to evolve into other means for measuring
progress and steering the future work programme

http:/ / concurrency.web.cern.ch ,

Thursday, November 1, 12

http://concurrency.web.cern.ch
http://concurrency.web.cern.ch

I'BB Technology

* Intel® Threading Building Blocks (TBB) has been identified as a good
match for implementing concurrency at the Framework level

* C++ library with a rich and complete approach to express parallelism

+ Concurrent containers: concurrent_vector, concurrent_hash_map,
+ Algorithms: parallel_for, pipeline, task, ...

+ QOther: atomic data types, memory allocators, ...

* Provides a “task-based” programming model that abstracts platform
details and threading mechanisms for scalability and performance

+ Positive evaluations reported at the Concurrency Forum

+ Easy to build and very portable
+ Lower CPU overhead than other libraries evaluated

* Missing functionalities are generally easy to add

13

Thursday, November 1, 12

Prototype: Gauditive

So far a ‘toy’ Framework implemented using TBB

+ No real algorithms but CPU crunchers

* Timing and data dependencies from real workflows

* Schedule an Algorithm when its inputs are available "
* Need to declare Algorithms’ inputs EventLoopMgr
+ The tbb::task is the pair (Algorithm*, EventContext®) t

* Multiple events managed simultaneously Scheduler
+ Bigger probability to schedule an Algorithm Algorithm Pool
+ Whiteboard integrated in the Data Store E
+ Which has been made thread safe Y — I

Algorlthm

* Several copies of the same algorithm can coexist

Whiteboard
* Running on ditferent events é
Execution Event N
+ Responsibility of AlgoPool to manage the copies Context \.)

+ Some services have been made thread-safe

* E.g. TBBMessageService
14

Thursday, November 1, 12

Test On Brunel Worktlow

GaudiHive Speedup (Brunel, 100 evts)

Simultaneous Evts:
v 20 (clone)
= 20

5 (clone)

5
e 3 (clone)
—_—r 3
verdans 2 (clone)

— ol -

N N
o 2

Speedup wrt Serial Case

-
o

@+ 1(clone)
e e 1

10—

. s "
:::
'''''
et
et
e
Wt

.........................

Thread Pool Size

Test system with 12 physical cores x 2
hardware threads (HT)

* 214 Algorithms, real data
dependencies, (average) real
timing
* Maximum speedup depends

strongly on the workflow
chosen

* Adding more simultaneous
events moves the maximum
concurrency from 3 to 4 with
single Algorithm instances

* Increased parallelism when
cloning algorithms

+ Even with a moderate number
of events in flight

15

Thursday, November 1, 12

Clones vs. Runtime

7

* Tested strategy

6)
+ Algorithm cloned if it can be scheduled |
and all its existent instances
busy on other events 2 . .
-E 3 @e o [

* Long running algorithms end
up having multiple clones

N
T

@ ~110 algorithms

[
I

* Easy solution but we need to worry
about statistical outputs (counters, 0

: _1 0 1 2 3
histograms, etc.) Runtime (s)

+ Alternatively, these are candidate algorithms to be parallelized

* A high number of short algorithms have 2 copies

+ We may forbid multiple copies for those without probably reducing
achievable parallelism

Thursday, November 1, 12

Event Backlog

+ Event backlog: difference between latest event put in flight and oldest event
being processed

* Cloning helps maintaining a little event backlog

* Cloning increases throughout, but as well results in guaranteed latencies

80 | Event tI)acklogl

— no cloning
70} e—e cloning

w H % (o)}
o o o o
T T

Difference to oldest event in flight

N
o

A

R O T
Gt i LAy
Number of events 05~ el o s = l‘m .‘ 00 = 120 : t' 160
in flight Events finished

Thursday, November 1, 12

Concurrent Gaudi: Status

* A prototype of a concurrent Gaudi (GaudiHive) has been developed
as an evolution (new branch in the Gaudi git repository)

+ Able to schedule and run algorithms concurrently
* Able to run multiple events simultaneously

+ Friendly with sub-event parallelism if using TBB (not tested yet)

+ So far has been tested with “fake” BRUNEL reconstruction workflow:

+ Important speedup already been obtained, but no "perfect” scaling achieved
yet

* Algorithm cloning increase parallelism, keeps “latency” under control

* Test bench to exercise timings and dependencies for other
applications:

+ CMSSW reconstruction workflow (already there)
+ ATLAS (got preliminary input)

18

Thursday, November 1, 12

Concurrent Gaudi: Plans

* Continue the investigation about thread unsafe Gaudi elements

* For example Services, public Tools, Incidents, etc.

* Provide options for their upgrade

* Multiple copies+merge?

* Locked-gateway?
* Finding reusable patterns for thread-safe access to shared resources

* Strategy: start running real algorithms

+ Start with subset of LHCb reconstruction (~30 algorithms) including I/ O

+ Extend to full workflow later

19

Thursday, November 1, 12

Conclusions

* Applications will increasingly need to be concurrent if we want to fully
exploit the continuing exponential CPU throughput gains

* Parallelizing the framework spares physicists from developing parallel code
and is the natural place to have the full overview and control of the application

* The Concurrency Forum: important results achieved

* Evaluation of possible common technologies (e.g. TBB)

+ Prototype of Gaudi Framework with concurrency has been developed

* Jdeal test-bench for validating scheduling strategies

* Initial results has been presented

* A clear trend emerged for the future of HEP data processing

* Parallelism within the algorithms
* Parallelism among algorithms

* Parallelism among events

20

Thursday, November 1, 12

