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 Abstract – Software engineering is undergoing a paradigm shift 
in order to accommodate new CPU architectures with many 
cores, in which concurrency will play a more fundamental role in 
programming languages and libraries. Development of new 
models and specialized software frameworks is needed to assist 
LHC scientists in developing their software algorithms and 
applications that allow for maximally parallel execution. In this 
paper we present our current ideas for evolving the frameworks 
in use by the LHC experiments to support the decomposition of 
the data processing of each event into smaller tasks that can be 
executed simultaneously on different CPUs, together with the 
ability to process several events at the same time. Results from 
the prototype used to exercise the key aspects of the new 
frameworks are described. 

I. INTRODUCTION 
A major effort to reengineer existing HEP software is 

needed for the future efficient exploitation of resources being 
invested in computer centers used by HEP experiments. In 
fact, many campaigns have already been conducted to measure 
and improve the performance of existing HEP codes. At the 
LHC this continues to be a major point of concern, as 
increasing trigger rates and more event complexity result in 
ever increasing demands on both CPU and memory. However 
this situation is taking on a new dimension due to the fact that 
the latest generations of computers have started to introduce 
higher levels of parallelism, i.e. new CPU microarchitectures 
and computing systems with multiple CPUs. Significant 
agility will be needed to adapt, and even redesign, the 
algorithms and data structures of existing HEP code to fully 
utilize the available processing power. Evidently much work 
needs to be done to evaluate and select the best emerging 
software technologies, and to adapt our codes to new 
programming models that can exploit the potential offered by 
the new hardware. 

Today, processors employing 2,4,6 or more cores 
(multi‐core) are in widespread use; moreover this trend is 
expected to continue in the future towards chips having 
hundreds of cores. Parallelism is also present within the single 
cores in the form of vector instructions, instruction pipelining, 
multiple instructions per clock cycle and hardware threading. 
As a consequence, the improvement in software performance 
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that can be achieved depends very much on the algorithms 
used and their implementation. In particular, possible gains are 
limited by the fraction of the software that can be parallelized 
to run on multiple cores simultaneously, whilst exploiting at 
the same time the opportunities offered by parallelism within 
the single CPU. 

Traditionally HEP experiments exploit multiple cores by 
having simultaneously each core process different HEP events; 
this is an example of a so‐called embarrassingly parallel 
problem that results in speedup factors that scale with the 
number of cores. However, as already mentioned, a trend 
towards many (100's) cores on a single socket is expected in 
the near future, whilst technical limitations on connecting 
them to shared memory could reduce the amount of memory 
that can be accessed efficiently by a single core. 

There is general recognition of the need for a collective 
response by the whole community to these trends[1]. As a first 
step an initiative has already been taken to establish a new 
forum2, open to the whole HEP community, making activities 
in this area visible. The goals are to establish a consensus on 
technology choices that need to be made, such as the best 
concurrent programming models and software libraries that 
support multi‐threading, and a common view on new software 
components that should be developed for use in the data 
processing frameworks of the HEP experiments. 

The investment made by each LHC experiment in the data 
processing software is huge. It amounts to several million 
lines of working C++ code and is actually producing good 
results. Ideally the evolution of these data processing 
applications should be made in a way that preserves this 
investment.  

II. DATA PROCESSING FRAMEWORKS 
 
LHC experiments have been developing object-oriented 

software frameworks on which they base all their data 
processing applications such as trigger, reconstruction, 
simulation and analysis. An example of such frameworks is 
Gaudi [1], which is used by LHCb and ATLAS experiments at 
the LHC. The central component in this framework is the 
Algorithm3, which transforms raw event data into processed 
data e.g. from detector digitizations to hits, from hits to 
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clusters or tracks, from tracks to jets, etc. The implementation 
of these Algorithms encapsulates the knowledge physicists 
have of detector and physics performance, and represents the 
real substance of these data processing applications. The 
software integrators then combine a fairly large number of 
these Algorithms, together with other components that provide 
core functionality, in order to assemble and configure a 
complete application. 

The way an Algorithm interacts with the framework is kept 
very simple. It interacts solely with a special piece of code 
called the Transient Event Data Store (also called Whiteboard 
later in this paper) in order to retrieve its input data and 
eventually also to store the results it produces, called the data 
products. The execution of each Algorithm is completely 
independent of those other algorithms (the producers) that 
provide its input data, as well as those algorithms (the 
consumers) that make use of its results (Fig. 1).  
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Fig. 1. The dataflow between Algorithms is implemented using a central 
service in the framework, which is the Transient Event Data Store 
(Whiteboard). The apparent dataflow is actually implemented in terms of 
“gets” and “puts” to the data store such that the Algorithm developer does not 
need to know how and by what the input data was produced and what will 
consume the results. 

 
Algorithms are in today’s frameworks “initialized” at the 

beginning of the job and run sequentially in a predefined order 
for each event in the main event loop, and “finalized” at the 
end to output any statistical quantities. The sequencing of 
algorithms such that some can run in parallel is central to 
enabling the concurrent execution of code when processing a 
single event. The one-job-per-core approach, which is 
currently used for LHC data processing, will soon fail due to 
memory limitations and the fact that the merging of output 
files produced by each job needs to be done sequentially, thus 
reducing the overall speedup (Amdahl's law [3]).  

III. LEVELS OF CONCURRENCY 
In the execution structure of current frameworks three 

levels of parallelism may be identified: parallelism among 
events, among algorithms and within single algorithms. All 
three categories need to be considered when designing a 
concurrent HEP framework.  

The first step is to determine the data dependencies between 
the full set of Algorithms; those that are data-independent can 
be run in parallel. A careful study of several large data 
processing applications has revealed that most time is spent in 
the execution of a relatively small number of complex 
algorithms such that, on average, only a few can be executed 
simultaneously [4]. 

This limitation can be overcome by processing multiple 
events concurrently. It increases the probability to be in the 
right condition to schedule a certain Algorithm at a given time, 
therefore incrementing the maximum achievable level of 
concurrency. The two aforementioned means of expressing 
parallelism have the advantage to be completely encapsulated 
in the framework therewith shielding the Algorithms 
developers from the difficulties linked to parallel 
programming and, above all, to re-use, only with a limited set 
of changes, existing code. 

Finally, parallelism within algorithms offers a means to 
further exploit the available resources. In addition, it naturally 
allows shrinking its runtime and therefore to reduce the 
congestion generated in the scheduling of long-running 
entities.  

An implementation should aim to dovetail these domain 
specific categories of parallelism with the features offered by 
modern hardware. We will restrict ourselves to CPUs in this 
document. In this context, three main types of hardware 
support for parallelism can be itemized: instruction level 
parallelism (ILP), vector units and multiprocessor systems 
(including multicore processors). 

ILP is the potential overlap among the execution of 
instructions by the CPU, and is realized by using components 
such as the instruction pipeline or superscalar architectures. 
Despite its importance, a comprehensive characterization of 
ILP is beyond the scope of this paper due to its complexity 
(see for example [5] for details).  

Vector units are processor registers, which can be used to 
execute single instructions on multiple data (SIMD). They 
therefore offer the most low-level implementation of data 
parallelism. Hardware vendors have been supporting different 
flavors of SIMD instructions for more than ten years [6]. 
Notable examples of SIMD instruction sets are the SSE, which 
allows four single precision floating point or two double 
precision numbers to be treated, and the more recent AVX that 
allows for eight single precision floating point or four double 
precision numbers. The extrapolation of present trends in 
hardware technologies clearly suggests that vector units will 
be an important feature of future chip design.  

One of the most prominent manifestations of Moore’s law 
[7] in recent years has been the presence of an increasing 
number of CPU cores within the same die of commodity 
chips. This new situation paves the way towards great 
increases of software performance, achievable for example via 
a task based programming model. 

 

IV. TASK-BASED PARALLELISM 
On transforming a sequential problem into a parallel one, 

chunks of work must be identified that are independent of each 
other, such that they can be executed concurrently. At the 



level of the operating system there are two ways of mapping 
the identified chunks onto concrete entities i.e. multiple 
(independent) processes or a process with multiple threads. 
However, the creation and deletion of both processes and even 
threads introduces a big overhead, which may cancel out the 
potential speedup. A common software design pattern, so-
called thread pools, can be adopted in order to alleviate this 
problem. In this approach, a fixed number of threads is re-used 
for various tasks that are placed in a task queue. 

Conceptually one can distinguish two types of behavior of 
these tasks and their scheduling, namely preemptive and 
cooperative. While in the preemptive case tasks may be 
interrupted by the scheduler to give way for other tasks, a 
cooperative scheduling requires a given task to free its 
resources explicitly. The former case is essential for highly 
interactive use cases; the latter usually yields the better 
throughput performance, due to a reduced number of context 
switches, and is best-suited for a non-interactive application. 
One possible implementation of the cooperative task model is 
provided by the Intel Threading Building Block (TBB) library 
[8]; the work presented in this paper is based upon use of 
TBB. 

TBB offers higher a high-level abstraction layer based on 
the task model. One example is parallel_for, which slices a 
loop into several tasks. In order not to have these probably 
short-lived ad-hoc tasks compete with the execution of older, 
more heavy-weight tasks, the TBB task scheduler processes 
the task queue in last-in-first-out (LIFO) order. This as well 
dramatically improves the potential for cache re-usage. 
However, LIFO processing usually comes with a bad latency 
behavior, since tasks may be sitting in the queue for a rather 
long time. Section VI explains how this issue is being 
addressed in the present study. 

V. THE GAUDIHIVE PROTOTYPE 
We have started to re-design the Gaudi framework to 

embrace concurrency. For this we have created a prototype 
(GaudiHive), which follows the concept of task parallelism. 
Here a task executes a given Algorithm on a given event. The 
dependencies of these tasks on each other can be expressed in 
terms of a directed acyclic graph (DAG) formed from the 
input-output relation of the Algorithms (Fig. 1). This graph can 
be exploited for parallel scheduling in three ways: 

1. Scheduling following a fully static approach. 
2. Launching algorithms whenever their output is being 

requested, i.e. data-on-demand. This implies traversing 
the dependency graph backwards. 

3. Launching algorithms whenever the required input is 
available, which implies traversing the dependency graph 
forwards. 

Ideally the first option seems to be the best approach. 
However, the lack of dynamic components imposes a major 
hurdle when considering a use-case such as triggering in 
which Algorithm execution may become optional. In this case 
the second approach seems to be the most efficient as there are 
never algorithms executed whose output is not needed. 
However, data-on-demand interrupts an Algorithm in the 
middle of execution and can only request one input at a time, 

thus placing a limit on the level of concurrency that can be 
achieved.  

For these reasons, the GaudiHive prototype is based on 
driving the execution according to the availability of data i.e. 
option 3. In practice, this is achieved as follows. The central 
elements are depicted in Fig. 2 and include a special parallel 
Scheduler and the Whiteboard as thread-safe event store. In 
addition, all Algorithms are required to declare their required 
input data as part of the initialization step. The other parts of 
Gaudi are left unaltered. 
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Fig. 2. A diagram illustrating collaboration between framework components 
developed for the GaudiHive prototype.  

 
As soon as new data become available in the Whiteboard, 

the Scheduler checks to see whether there are Algorithms 
whose input data dependencies are fulfilled. Concrete 
Algorithm instances are then requested from an 
AlgorithmPool, and then wrapped as TBB tasks. These are 
then pushed to the task queue and eventually executed. As 
soon as  execution is finished, the instance is released again to 
the AlgorithmPool. 

Exploiting this for intra-event concurrency the maximal 
speedup is limited by the real Algorithm dependencies. A 
speedup of 3-5 for a typical LHC experiment reconstruction 
can be typically achieved. This however does not scale with 
the increase of CPU core counts that we can anticipate in the 
near future. Therefore the option of executing multiple events 
in parallel has to be considered. 

Introducing event parallelism has many implications. 
Firstly, the Whiteboard has to store multiple events in a 
thread-safe manner, as depicted in Fig. 2. In addition, 
Algorithms are usually not thread-safe and so a complex 
Algorithm, such as found in track reconstruction, cannot be 
applied in two events at the same time and therefore it requires 
that the CPU has exclusive access to internal states of the track 
Algorithm. In the present case, the management of exclusive 
Algorithm instances is done via a (thread-safe) AlgorithmPool. 
To reduce the blocking due to busy algorithms, the presented 
prototype allows the cloning of Algorithms, so that multiple 
instances of the same Algorithm are available in the 
AlgorithmPool. 



Obviously, cloning imposes a problem for internal 
bookkeeping, including the use of counters or histograms. The 
copies of these data have to be combined once synchronization 
points such as 'end-of-run' and 'end-of-job' are reached. 
However, as will be shown in section VI this cloning is only 
necessary for a handful of algorithms. The reduction problem 
will thus be solvable by adjusting a limited number of well-
defined parts of the code.  

While in a single-event-framework the currently processed 
event, including event data and corresponding detector 
conditions data, can be treated as a global state, a multi-event 
framework cannot make this assumption. GaudiHive uses the 
concept of an ExecutionContext, which gives access to all 
event specific data relevant for the application of an Algorithm 
in a given event. The most prominent use of this feature is to 
reference the proper event in the Whiteboard. 

The prototype consists of an implementation of the 
components shown in Fig. 2, together with the already existing 
components such as the thread-safe logging mechanism. This 
has allowed us to perform detailed studies of runtime behavior 
and to measure speed-up factors that can be achieved. The 
results of these measurements are described and discussed in 
the following sections. 

VI. PROTOTYPE RESULTS 
In order to measure the expected performance of the 

GaudiHive prototype in a simplified environment, real 
implementations of the algorithms were replaced by 
emulations that reproduced the expected runtimes. They 
corresponded to a real workflow of the LHCb reconstruction 
application (Brunel), which includes about 214 reconstruction 
Algorithms and their data dependencies. The speedup 
normalized to the serial version was measured with respect to 
the size of the thread pool for different numbers of 
simultaneous events, enabling and disabling cloning of 
algorithms. 

 
 

 

Fig. 3. Speedup normalized to the linear version as a function of the thread 
pool size on a 12 physical (24 hardware threaded) core machine. 
 

Fig. 3 shows the speedup that can be achieved, normalized 
to the linear version, as a function of the thread pool size on a 
12 physical (24 hardware threaded) core machine. A saturation 
speedup factor of about 4 is reached without cloning 
algorithms (solid lines). Once cloning is enabled, perfect 
scaling is present up to 11 cores (the main thread was not used 
to schedule algorithms), the degraded performance of 
hardware threads is then evident. It is important to note how 
the increase of the number of events simultaneously processed 
improves parallelism and how saturation is reached at about 
the value of 20 for the number of available physical threads on 
this particular machine. 

 
Another benefit linked to the usage of cloning is the 

reduction of the event backlog, i.e. the difference, at a given 
time, between the largest and smallest event number among 
the ones of the events being processed and this is shown in 
Fig. 4. Therefore we can guarantee an upper limit in the event 
latency. 

 

 
Fig. 4. Event backlog for the processing of 150 events, with 10 threads and 
15 simultaneous events, in the presence (absence) of algorithm cloning. 

 
Algorithm cloning requires additional memory resources, 

but in order to achieve a good scaling, cloning of the 
algorithms with the longest runtime may only be necessary. 
Fig. 5 shows the final number of Algorithm instances as a 
function of their runtime that result from the automatic cloning 
strategy currently implemented in the prototype. An Algorithm 
is cloned if it can be scheduled (i.e. all its required data items 
are available) and all its instances are busy on other events. 
Obviously, the longer the runtime of an Algorithm, the higher 
is the probability of needing to clone it. It can be seen in Fig. 5 
that the vast majority of Algorithms may not require to be 
cloned. In addition, the ones that ended as two copies could 
also be avoided without lost of performance.  

 



 
 

Fig. 5.  The final number of Algorithm instances as a function of their 
runtime that result from the automatic cloning strategy currently implemented. 

VII. PLANS 
The results already obtained in scheduling Algorithms are 

very encouraging but we are still far from running an 
application with realistic Algorithms processing real physics 
data and producing results that can be compared with the 
sequential version of the application. We need to continue the 
investigation on how to make all the elements of the Gaudi 
framework thread-safe in an optimal manner. These elements 
are Services, such as the histogram service or the random 
number service, as well as the Tools used by the Algorithms, 
and the asynchronous messages exchanged between 
components that are called Incidents. Ideally we would like to 
find re-useable patterns for thread-safe access to these shared 
services and resources. 

The strategy we are following is to start the adaptation of a 
reduced workflow of the LHCb reconstruction program that 
consists of about 30 Algorithms producing real results that can 
be compared. This will give us enough variety of multi-
threading problems to solve without being overwhelmed by 
the task. This mini-Brunel will also provide us a solid 
benchmark to validate the implemented solutions. Later we 
plan to extend it to the full Brunel workflow once it is working 
satisfactory. 

VIII. CONCLUSIONS 
Applications will need to exploit increasing levels of 

parallelism if we want to fully exploit the continuing 
exponential CPU throughput gains. We are convinced that 
introducing parallelism at the level of the framework has the 
potential of scaling to large number of threads, or cores, and at 
the same time spares the developers of Algorithms, i.e. 
physicists, from having to develop new and complex parallel 
code. This will allow us to preserve the huge investment made 
in the existing LHC software.  

Collaboration and sharing knowledge and findings between 
HEP experiments and major projects in the early days on this 
new endeavor is essential. Evolving the current sequential data 
processing applications to concurrent ones is a major 
paradigm shift, comparable to the introduction of object-

orientation that the HEP community made about 10-15 years 
ago. The Concurrency Forum is serving the HEP community 
in this new era. Promising technologies and programming 
models (such as TBB) have been evaluated and a number of 
important results have already been achieved. 

  The GaudiHive prototype of the Gaudi Framework 
introducing concurrency has been developed. At its current 
state it is already an ideal test-bench for validating scheduling 
strategies of typical HEP applications data-flows. We plan to 
evolve the current prototype to be able to run real physics 
applications and use this to learn all possible difficulties of 
migrating originally written sequential code into a multi-
threaded environment.  

A clear trend is emerging for the future of HEP data 
processing applications. These new applications will need to 
introduce parallelism inside CPU demanding Algorithms, be 
able to run several independent Algorithms in parallel and at 
the time be able to process several events in parallel. Only 
adding the three levels we will manage to achieve the desired 
scalability to fully exploit the new CPUs.  
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