
B. Hegner, P. Mato, D. Piparo

 Abstract – Software engineering is undergoing a paradigm shift
in order to accommodate new CPU architectures with many
cores, in which concurrency will play a more fundamental role in
programming languages and libraries. Development of new
models and specialized software frameworks is needed to assist
LHC scientists in developing their software algorithms and
applications that allow for maximally parallel execution. In this
paper we present our current ideas for evolving the frameworks
in use by the LHC experiments to support the decomposition of
the data processing of each event into smaller tasks that can be
executed simultaneously on different CPUs, together with the
ability to process several events at the same time. Results from
the prototype used to exercise the key aspects of the new
frameworks are described.

I. INTRODUCTION
A major effort to reengineer existing HEP software is

needed for the future efficient exploitation of resources being
invested in computer centers used by HEP experiments. In
fact, many campaigns have already been conducted to measure
and improve the performance of existing HEP codes. At the
LHC this continues to be a major point of concern, as
increasing trigger rates and more event complexity result in
ever increasing demands on both CPU and memory. However
this situation is taking on a new dimension due to the fact that
the latest generations of computers have started to introduce
higher levels of parallelism, i.e. new CPU microarchitectures
and computing systems with multiple CPUs. Significant
agility will be needed to adapt, and even redesign, the
algorithms and data structures of existing HEP code to fully
utilize the available processing power. Evidently much work
needs to be done to evaluate and select the best emerging
software technologies, and to adapt our codes to new
programming models that can exploit the potential offered by
the new hardware.

Today, processors employing 2,4,6 or more cores
(multi‐core) are in widespread use; moreover this trend is
expected to continue in the future towards chips having
hundreds of cores. Parallelism is also present within the single
cores in the form of vector instructions, instruction pipelining,
multiple instructions per clock cycle and hardware threading.
As a consequence, the improvement in software performance

Manuscript received November 19, 2012
B. Hegner, P. Mato and D. Piparo are with Physics Department, CERN, 1211
Geneva 23, Switzerland

that can be achieved depends very much on the algorithms
used and their implementation. In particular, possible gains are
limited by the fraction of the software that can be parallelized
to run on multiple cores simultaneously, whilst exploiting at
the same time the opportunities offered by parallelism within
the single CPU.

Traditionally HEP experiments exploit multiple cores by
having simultaneously each core process different HEP events;
this is an example of a so‐called embarrassingly parallel
problem that results in speedup factors that scale with the
number of cores. However, as already mentioned, a trend
towards many (100's) cores on a single socket is expected in
the near future, whilst technical limitations on connecting
them to shared memory could reduce the amount of memory
that can be accessed efficiently by a single core.

There is general recognition of the need for a collective
response by the whole community to these trends[1]. As a first
step an initiative has already been taken to establish a new
forum2, open to the whole HEP community, making activities
in this area visible. The goals are to establish a consensus on
technology choices that need to be made, such as the best
concurrent programming models and software libraries that
support multi‐threading, and a common view on new software
components that should be developed for use in the data
processing frameworks of the HEP experiments.

The investment made by each LHC experiment in the data
processing software is huge. It amounts to several million
lines of working C++ code and is actually producing good
results. Ideally the evolution of these data processing
applications should be made in a way that preserves this
investment.

II. DATA PROCESSING FRAMEWORKS

LHC experiments have been developing object-oriented

software frameworks on which they base all their data
processing applications such as trigger, reconstruction,
simulation and analysis. An example of such frameworks is
Gaudi [1], which is used by LHCb and ATLAS experiments at
the LHC. The central component in this framework is the
Algorithm3, which transforms raw event data into processed
data e.g. from detector digitizations to hits, from hits to

2 http://concurrency.web.cern.ch
3 Also called Module in other frameworks such as CMSSW, Marlin

Evolving LHC Data Processing Frameworks

for Efficient Exploitation of New CPU
Architectures

clusters or tracks, from tracks to jets, etc. The implementation
of these Algorithms encapsulates the knowledge physicists
have of detector and physics performance, and represents the
real substance of these data processing applications. The
software integrators then combine a fairly large number of
these Algorithms, together with other components that provide
core functionality, in order to assemble and configure a
complete application.

The way an Algorithm interacts with the framework is kept
very simple. It interacts solely with a special piece of code
called the Transient Event Data Store (also called Whiteboard
later in this paper) in order to retrieve its input data and
eventually also to store the results it produces, called the data
products. The execution of each Algorithm is completely
independent of those other algorithms (the producers) that
provide its input data, as well as those algorithms (the
consumers) that make use of its results (Fig. 1).

Algorithm
A

Algorithm
B

Algorithm
C

Transient Event
Data Store

Data T1

Data T2, T3

Data T2

Data T3, T4

Data T4

Data T5

Data T1 Data T1

Data T5

Real dataflow

Apparent dataflow

Fig. 1. The dataflow between Algorithms is implemented using a central
service in the framework, which is the Transient Event Data Store
(Whiteboard). The apparent dataflow is actually implemented in terms of
“gets” and “puts” to the data store such that the Algorithm developer does not
need to know how and by what the input data was produced and what will
consume the results.

Algorithms are in today’s frameworks “initialized” at the

beginning of the job and run sequentially in a predefined order
for each event in the main event loop, and “finalized” at the
end to output any statistical quantities. The sequencing of
algorithms such that some can run in parallel is central to
enabling the concurrent execution of code when processing a
single event. The one-job-per-core approach, which is
currently used for LHC data processing, will soon fail due to
memory limitations and the fact that the merging of output
files produced by each job needs to be done sequentially, thus
reducing the overall speedup (Amdahl's law [3]).

III. LEVELS OF CONCURRENCY
In the execution structure of current frameworks three

levels of parallelism may be identified: parallelism among
events, among algorithms and within single algorithms. All
three categories need to be considered when designing a
concurrent HEP framework.

The first step is to determine the data dependencies between
the full set of Algorithms; those that are data-independent can
be run in parallel. A careful study of several large data
processing applications has revealed that most time is spent in
the execution of a relatively small number of complex
algorithms such that, on average, only a few can be executed
simultaneously [4].

This limitation can be overcome by processing multiple
events concurrently. It increases the probability to be in the
right condition to schedule a certain Algorithm at a given time,
therefore incrementing the maximum achievable level of
concurrency. The two aforementioned means of expressing
parallelism have the advantage to be completely encapsulated
in the framework therewith shielding the Algorithms
developers from the difficulties linked to parallel
programming and, above all, to re-use, only with a limited set
of changes, existing code.

Finally, parallelism within algorithms offers a means to
further exploit the available resources. In addition, it naturally
allows shrinking its runtime and therefore to reduce the
congestion generated in the scheduling of long-running
entities.

An implementation should aim to dovetail these domain
specific categories of parallelism with the features offered by
modern hardware. We will restrict ourselves to CPUs in this
document. In this context, three main types of hardware
support for parallelism can be itemized: instruction level
parallelism (ILP), vector units and multiprocessor systems
(including multicore processors).

ILP is the potential overlap among the execution of
instructions by the CPU, and is realized by using components
such as the instruction pipeline or superscalar architectures.
Despite its importance, a comprehensive characterization of
ILP is beyond the scope of this paper due to its complexity
(see for example [5] for details).

Vector units are processor registers, which can be used to
execute single instructions on multiple data (SIMD). They
therefore offer the most low-level implementation of data
parallelism. Hardware vendors have been supporting different
flavors of SIMD instructions for more than ten years [6].
Notable examples of SIMD instruction sets are the SSE, which
allows four single precision floating point or two double
precision numbers to be treated, and the more recent AVX that
allows for eight single precision floating point or four double
precision numbers. The extrapolation of present trends in
hardware technologies clearly suggests that vector units will
be an important feature of future chip design.

One of the most prominent manifestations of Moore’s law
[7] in recent years has been the presence of an increasing
number of CPU cores within the same die of commodity
chips. This new situation paves the way towards great
increases of software performance, achievable for example via
a task based programming model.

IV. TASK-BASED PARALLELISM
On transforming a sequential problem into a parallel one,

chunks of work must be identified that are independent of each
other, such that they can be executed concurrently. At the

level of the operating system there are two ways of mapping
the identified chunks onto concrete entities i.e. multiple
(independent) processes or a process with multiple threads.
However, the creation and deletion of both processes and even
threads introduces a big overhead, which may cancel out the
potential speedup. A common software design pattern, so-
called thread pools, can be adopted in order to alleviate this
problem. In this approach, a fixed number of threads is re-used
for various tasks that are placed in a task queue.

Conceptually one can distinguish two types of behavior of
these tasks and their scheduling, namely preemptive and
cooperative. While in the preemptive case tasks may be
interrupted by the scheduler to give way for other tasks, a
cooperative scheduling requires a given task to free its
resources explicitly. The former case is essential for highly
interactive use cases; the latter usually yields the better
throughput performance, due to a reduced number of context
switches, and is best-suited for a non-interactive application.
One possible implementation of the cooperative task model is
provided by the Intel Threading Building Block (TBB) library
[8]; the work presented in this paper is based upon use of
TBB.

TBB offers higher a high-level abstraction layer based on
the task model. One example is parallel_for, which slices a
loop into several tasks. In order not to have these probably
short-lived ad-hoc tasks compete with the execution of older,
more heavy-weight tasks, the TBB task scheduler processes
the task queue in last-in-first-out (LIFO) order. This as well
dramatically improves the potential for cache re-usage.
However, LIFO processing usually comes with a bad latency
behavior, since tasks may be sitting in the queue for a rather
long time. Section VI explains how this issue is being
addressed in the present study.

V. THE GAUDIHIVE PROTOTYPE
We have started to re-design the Gaudi framework to

embrace concurrency. For this we have created a prototype
(GaudiHive), which follows the concept of task parallelism.
Here a task executes a given Algorithm on a given event. The
dependencies of these tasks on each other can be expressed in
terms of a directed acyclic graph (DAG) formed from the
input-output relation of the Algorithms (Fig. 1). This graph can
be exploited for parallel scheduling in three ways:

1. Scheduling following a fully static approach.
2. Launching algorithms whenever their output is being

requested, i.e. data-on-demand. This implies traversing
the dependency graph backwards.

3. Launching algorithms whenever the required input is
available, which implies traversing the dependency graph
forwards.

Ideally the first option seems to be the best approach.
However, the lack of dynamic components imposes a major
hurdle when considering a use-case such as triggering in
which Algorithm execution may become optional. In this case
the second approach seems to be the most efficient as there are
never algorithms executed whose output is not needed.
However, data-on-demand interrupts an Algorithm in the
middle of execution and can only request one input at a time,

thus placing a limit on the level of concurrency that can be
achieved.

For these reasons, the GaudiHive prototype is based on
driving the execution according to the availability of data i.e.
option 3. In practice, this is achieved as follows. The central
elements are depicted in Fig. 2 and include a special parallel
Scheduler and the Whiteboard as thread-safe event store. In
addition, all Algorithms are required to declare their required
input data as part of the initialization step. The other parts of
Gaudi are left unaltered.

Whiteboard
(TES)

Algorithm

Event NEvent NEvent NExecutioExecution
Context

Algorithm
Algorithm

Scheduler

Algorithm Pooltbb::task'

EventLoopMgr

Fig. 2. A diagram illustrating collaboration between framework components
developed for the GaudiHive prototype.

As soon as new data become available in the Whiteboard,

the Scheduler checks to see whether there are Algorithms
whose input data dependencies are fulfilled. Concrete
Algorithm instances are then requested from an
AlgorithmPool, and then wrapped as TBB tasks. These are
then pushed to the task queue and eventually executed. As
soon as execution is finished, the instance is released again to
the AlgorithmPool.

Exploiting this for intra-event concurrency the maximal
speedup is limited by the real Algorithm dependencies. A
speedup of 3-5 for a typical LHC experiment reconstruction
can be typically achieved. This however does not scale with
the increase of CPU core counts that we can anticipate in the
near future. Therefore the option of executing multiple events
in parallel has to be considered.

Introducing event parallelism has many implications.
Firstly, the Whiteboard has to store multiple events in a
thread-safe manner, as depicted in Fig. 2. In addition,
Algorithms are usually not thread-safe and so a complex
Algorithm, such as found in track reconstruction, cannot be
applied in two events at the same time and therefore it requires
that the CPU has exclusive access to internal states of the track
Algorithm. In the present case, the management of exclusive
Algorithm instances is done via a (thread-safe) AlgorithmPool.
To reduce the blocking due to busy algorithms, the presented
prototype allows the cloning of Algorithms, so that multiple
instances of the same Algorithm are available in the
AlgorithmPool.

Obviously, cloning imposes a problem for internal
bookkeeping, including the use of counters or histograms. The
copies of these data have to be combined once synchronization
points such as 'end-of-run' and 'end-of-job' are reached.
However, as will be shown in section VI this cloning is only
necessary for a handful of algorithms. The reduction problem
will thus be solvable by adjusting a limited number of well-
defined parts of the code.

While in a single-event-framework the currently processed
event, including event data and corresponding detector
conditions data, can be treated as a global state, a multi-event
framework cannot make this assumption. GaudiHive uses the
concept of an ExecutionContext, which gives access to all
event specific data relevant for the application of an Algorithm
in a given event. The most prominent use of this feature is to
reference the proper event in the Whiteboard.

The prototype consists of an implementation of the
components shown in Fig. 2, together with the already existing
components such as the thread-safe logging mechanism. This
has allowed us to perform detailed studies of runtime behavior
and to measure speed-up factors that can be achieved. The
results of these measurements are described and discussed in
the following sections.

VI. PROTOTYPE RESULTS
In order to measure the expected performance of the

GaudiHive prototype in a simplified environment, real
implementations of the algorithms were replaced by
emulations that reproduced the expected runtimes. They
corresponded to a real workflow of the LHCb reconstruction
application (Brunel), which includes about 214 reconstruction
Algorithms and their data dependencies. The speedup
normalized to the serial version was measured with respect to
the size of the thread pool for different numbers of
simultaneous events, enabling and disabling cloning of
algorithms.

Fig. 3. Speedup normalized to the linear version as a function of the thread
pool size on a 12 physical (24 hardware threaded) core machine.

Fig. 3 shows the speedup that can be achieved, normalized
to the linear version, as a function of the thread pool size on a
12 physical (24 hardware threaded) core machine. A saturation
speedup factor of about 4 is reached without cloning
algorithms (solid lines). Once cloning is enabled, perfect
scaling is present up to 11 cores (the main thread was not used
to schedule algorithms), the degraded performance of
hardware threads is then evident. It is important to note how
the increase of the number of events simultaneously processed
improves parallelism and how saturation is reached at about
the value of 20 for the number of available physical threads on
this particular machine.

Another benefit linked to the usage of cloning is the

reduction of the event backlog, i.e. the difference, at a given
time, between the largest and smallest event number among
the ones of the events being processed and this is shown in
Fig. 4. Therefore we can guarantee an upper limit in the event
latency.

Fig. 4. Event backlog for the processing of 150 events, with 10 threads and
15 simultaneous events, in the presence (absence) of algorithm cloning.

Algorithm cloning requires additional memory resources,

but in order to achieve a good scaling, cloning of the
algorithms with the longest runtime may only be necessary.
Fig. 5 shows the final number of Algorithm instances as a
function of their runtime that result from the automatic cloning
strategy currently implemented in the prototype. An Algorithm
is cloned if it can be scheduled (i.e. all its required data items
are available) and all its instances are busy on other events.
Obviously, the longer the runtime of an Algorithm, the higher
is the probability of needing to clone it. It can be seen in Fig. 5
that the vast majority of Algorithms may not require to be
cloned. In addition, the ones that ended as two copies could
also be avoided without lost of performance.

Fig. 5. The final number of Algorithm instances as a function of their
runtime that result from the automatic cloning strategy currently implemented.

VII. PLANS
The results already obtained in scheduling Algorithms are

very encouraging but we are still far from running an
application with realistic Algorithms processing real physics
data and producing results that can be compared with the
sequential version of the application. We need to continue the
investigation on how to make all the elements of the Gaudi
framework thread-safe in an optimal manner. These elements
are Services, such as the histogram service or the random
number service, as well as the Tools used by the Algorithms,
and the asynchronous messages exchanged between
components that are called Incidents. Ideally we would like to
find re-useable patterns for thread-safe access to these shared
services and resources.

The strategy we are following is to start the adaptation of a
reduced workflow of the LHCb reconstruction program that
consists of about 30 Algorithms producing real results that can
be compared. This will give us enough variety of multi-
threading problems to solve without being overwhelmed by
the task. This mini-Brunel will also provide us a solid
benchmark to validate the implemented solutions. Later we
plan to extend it to the full Brunel workflow once it is working
satisfactory.

VIII. CONCLUSIONS
Applications will need to exploit increasing levels of

parallelism if we want to fully exploit the continuing
exponential CPU throughput gains. We are convinced that
introducing parallelism at the level of the framework has the
potential of scaling to large number of threads, or cores, and at
the same time spares the developers of Algorithms, i.e.
physicists, from having to develop new and complex parallel
code. This will allow us to preserve the huge investment made
in the existing LHC software.

Collaboration and sharing knowledge and findings between
HEP experiments and major projects in the early days on this
new endeavor is essential. Evolving the current sequential data
processing applications to concurrent ones is a major
paradigm shift, comparable to the introduction of object-

orientation that the HEP community made about 10-15 years
ago. The Concurrency Forum is serving the HEP community
in this new era. Promising technologies and programming
models (such as TBB) have been evaluated and a number of
important results have already been achieved.

 The GaudiHive prototype of the Gaudi Framework
introducing concurrency has been developed. At its current
state it is already an ideal test-bench for validating scheduling
strategies of typical HEP applications data-flows. We plan to
evolve the current prototype to be able to run real physics
applications and use this to learn all possible difficulties of
migrating originally written sequential code into a multi-
threaded environment.

A clear trend is emerging for the future of HEP data
processing applications. These new applications will need to
introduce parallelism inside CPU demanding Algorithms, be
able to run several independent Algorithms in parallel and at
the time be able to process several events in parallel. Only
adding the three levels we will manage to achieve the desired
scalability to fully exploit the new CPUs.

IX. ACKNOWLEDGMENT
We thank our colleagues Riccardo Mari Bianchi, Marco

Clemencic, Markus Frank and Illya Shapoval for the very
fruitful and often-lengthy discussions we have had during the
inception of this new framework.

We thank John Harvey for reviewing the manuscript.

X. REFERENCES
[1] J. Harvey et al, Addressing the challenges posed to HEP software due to

the emergence of new CPU architectures, paper submitted at Open
Symposium on European Strategy for Particle Physics 2012, Kraków,
Poland

[2] G. Barrand et al, GAUDI - A software architecture and framework for
building HEP data processing applications, Comput.Phys.Commun. 140
(2001) 45-55

[3] G. M. Amdahl, Spring Joint Computer Conference, Atlantic City, NJ,
USA, 18 - 20 Apr 1967, pp.483-485

[4] C. D. Jones et al., Multi-core aware applications in CMS, 2011 J. Phys.:
Conf. Ser. 331 042012

[5] B. Ramakrishna Rau, Joseph A. Fisher, Instruction-level parallel
processing: History, overview, and perspective, The Journal of
Supercomputing - TJS , vol. 7, no. 1, pp. 9-50, 1993

[6] V. Innocente, D. Piparo, T. Hauth, Development and Evaluation of
Vectorised and Multi-Core Event Reconstruction Algorithms within the
CMS Software Framework, Proceedings of CHEP2012, JPCS to appear

[7] G. Moore, Cramming more components onto integrated circuits,
Electronics, pp. 114–117, April 19, 1965.

[8] J. Reinders, Intel Threading Building Blocks, O’Reilly Media, 2007

